Alternating Weighted Sums of Inverses of Binomial Coefficients

نویسنده

  • Renzo Sprugnoli
چکیده

We consider the alternating sums S (m) n = ∑n k=0(−1) k ( n k ) −1 , recently studied by Belbachir, Rahmani, and Sury, and obtain some results complementary to those found by the three authors, especially concerning generating functions, closed forms, and asymptotic approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain Sums Involving Inverses of Binomial Coefficients and Some Integrals

In this paper, we are concerned with sums involving inverses of binomial coefficients. We study certain sums involving reciprocals of binomial coefficients by using some integrals. Some recurrence relations related to inverses of binomial coefficients are obtained. In addition, we give the approximate values of certain sums involving the inverses of binomial coefficients.

متن کامل

Sums Involving the Inverses of Binomial Coefficients

In this paper, we compute certain sums involving the inverses of binomial coefficients. We derive the recurrence formulas for certain infinite sums related to the inverses of binomial coefficients.

متن کامل

Catalan Triangle Numbers and Binomial Coefficients

The binomial coefficients and Catalan triangle numbers appear as weight multiplicities of the finite-dimensional simple Lie algebras and affine Kac–Moody algebras. We prove that any binomial coefficient can be written as weighted sums along rows of the Catalan triangle. The coefficients in the sums form a triangular array, which we call the alternating Jacobsthal triangle. We study various subs...

متن کامل

Factors of alternating sums of products of binomial and q-binomial coefficients

In this paper we study the factors of some alternating sums of products of binomial and q-binomial coefficients. We prove that for all positive integers

متن کامل

Some Classes of Alternating Weighted Binomial Sums

In this paper, we consider three classes of generalized alternating weighted binomial sums of the form n ∑ i=0 ( n i ) (−1) f (n, i, k, t) where f (n, i, k, t) will be chosen as UktiVkn−k(t+2)i, UktiVkn−kti and UtkiV(k+1)tn−(k+2)ti. We use the Binet formula and the Newton binomial formula to prove the claimed results. Further we present some interesting examples of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012